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Abstract

Recent advances in multimodal training use textual descriptions to significantly
enhance machine understanding of images and videos. Yet, it remains unclear
to what extent language can fully capture sensory experiences across different
modalities. A well-established approach for characterizing sensory experiences
relies on similarity judgments, namely, the degree to which people perceive two
distinct stimuli as similar. We explore the relation between human similarity
judgments and language in a series of large-scale behavioral studies (N = 1, 823
participants) across three modalities (images, audio, and video) and two types
of text descriptors: simple word tags and free-text captions. In doing so, we
introduce a novel adaptive pipeline for tag mining that is both efficient and domain-
general. We show that our prediction pipeline based on text descriptors exhibits
excellent performance, and we compare it against a comprehensive array of 611
baseline models based on vision-, audio-, and video-processing architectures2.
We further show that the degree to which textual descriptors and models predict
human similarity varies across and within modalities. Taken together, these studies
illustrate the value of integrating machine learning and cognitive science approaches
to better understand the similarities and differences between human and machine
representations.

1 Introduction

Whether playing an instrument or deciding when to cross a street, human experience is based on
complex multimodal sensory information. Language is an extremely efficient way for humans to
communicate information about their sensory environment [1–4]. However, a long-standing problem
in cognitive science concerns the limitations of language as a tool for describing the full extent of
sensory experiences [5, 6]. Recent advances in machine learning (ML) suggest that, like humans,
machines can benefit greatly from language [7–9]. Traditional supervised learning models are trained
on massive amounts of labeled data, often exhibiting human-level performance on target tasks [10].
Nevertheless, these models are criticized for failing to capture certain aspects of scene understanding,
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2We present an interactive visualization https://words-are-all-you-need.s3.amazonaws.com/

index.html for exploring the similarity between stimuli as experienced by humans and different methods
reported in the paper.
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Figure 1: Comparing human similarity scores gathered through crowdsourcing with ML pipelines.
A: We used data from three modalities: images, audio, and video. For each modality, we extracted
deep model embeddings and gathered human captions and tags. Word- and language-embedding
models, as well as simple text analysis, were used to predict human similarity judgments. B: Novel
tag-mining paradigm. We ran an adaptive process in which results of one iteration are used as inputs
for subsequent iterations. In every iteration, participants can add a new tag, rate the relevance of
existing tags or flag tags that are inappropriate.

such as physics [11] or compositionality [12]. Modern multimodal models seem to push scene
understanding to a new frontier by jointly training on multimodal datasets (images/video/sounds)
along with detailed textual descriptions [7–9, 13, 14]. But are there any limitations for learning
from supervised textual descriptions? And to what degree can task-relevant sensory information be
obtained from supervised linguistic descriptors?

One common way to investigate human sensory experiences is using similarity judgments, namely
gathering perceived similarity ratings on pairs of distinct stimuli. Given a set of N stimuli, similarity-
based techniques begin by constructing an N × N similarity matrix, whereby each entry sij cor-
responds to the degree of similarity between stimuli i and j. Then, a suitable algorithm (e.g.,
multidimensional scaling [15] or UMAP [16]) finds a low-dimensional embedding such that similar
stimuli are mapped to nearby points in space. In psychology, this process has been used to shed
light on the underlying structure of the perceptual space and its associated mental representation
[15]. It has also inspired ML techniques that use similarity between batches of stimuli as part of their
objective function [7]. Here, our aim is to investigate the extent to which textual descriptions can
predict human similarity judgments across the visual, audio, and audio-visual modalities.

We considered datasets from three domains, namely images, sounds, and videos (Figure 1A). For
each of these datasets, we collected two types of text descriptors that serve complementary roles:
a) free-text captions that emulate the unconstrained form in which humans describe objects, and
b) concise semantic tags consisting of single words or small combinations of several words that
capture the important aspects of complex stimuli. Free-text descriptions are easy to crowdsource
online and are part of the common practice in modern ML pipelines. For tag collection, we used a
novel paradigm for tag-mining to gather high-quality responses (Figure 1B). Our paradigm extends
existing crowdsourcing text-mining techniques [17–20] by integrating ideas from transmission chain
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experiments [21, 22]. In this tag-mining paradigm, participants adaptively create annotations (or tags)
for a set of target stimuli and rate the annotations of others. In each trial, each participant inspects a
target stimulus (e.g., an image) and is asked to rate the relevance of tags that were created by other
participants or flag a tag that is inappropriate (with tags removed if they were flagged more than
twice). Participants are also given the opportunity to add new tags if desired. The results of the
annotation procedure of one participant then propagate to the next participant. Thus, as the process
unfolds over iterations, it quickly converges on top tags for each target stimulus (additional details
about the paradigm, and screenshots are provided in Supplementary Section B.6).

To generate predictions and quantify semantic similarity, we used word- and language-embedding
models that are capable of generating vector representations for both individual words and freely
generated text (e.g., CNNB [23], SimCSE [24] and CLIP [7]). In addition, we complemented this
approach with embedding-free methods based on word co-occurrence that rely on bag-of-words. Our
objective here is to determine how well we can predict human similarity judgments across the three
modalities (images, sounds, and video) using a combination of ML and human text-mining.

As a baseline, in each modality, we tested a wide range of pre-trained ML models that do not rely on
text (overall we tested 611 models) and compared their internal representations to human similarity
judgments and text-based predictions (Figure 1A). We also examined whether there are specific
types of architectures that are better suited for predicting human similarity, and whether modern
multimodal training indeed makes a difference in producing human-like representations. Moreover,
we wanted to investigate whether there are systematic variations in human similarity not explained by
contemporary machine representations, and if so, how large the gap is between human and machine
representations.

The contributions of this paper are as follows: a) We compare human similarity judgments to a
comprehensive set of pre-trained ML models in three different modalities: images (Section 3.1;
including state-of-the-art multimodal models), sounds (Section 3.2), and videos (Section 3.3). b)
These baseline models are compared to embedding-based and embedding-free approaches applied to
textual descriptors in order to show that the performance of text descriptors is comparable to image-,
audio-, and video-processing architectures. c) We introduce a novel adaptive tag-mining procedure
that is domain-general, efficient, and can predict human sensory similarity well (Section 3.1). d) We
present two new large descriptor datasets of audio and video to compare the performance of ML
algorithms with human similarity judgments (Section 3.4).

2 Comparison to previous research

In the past few years, significant effort has been put into the comparison of human internal repre-
sentations and brain signals to ML representations [25–32]. In this context, different notions of
similarity are often used as a tool for studying internal representations [15, 33–40]. Despite the
success of similarity-based techniques, the quadratic scaling of the number of human comparisons as
a function of the number of stimuli limits their applicability to large naturalistic and machine-learning
datasets. This problem stimulated recent research which attempts to predict similarity judgments
using cheaper data [36–38, 41–43]. For example, Peterson et al. [36] estimated perceptual similarity
over images by leveraging the latent representations of convolutional neural networks (CNNs). Here
we extend this comparison to significantly more models ranging across diverse architectures. Others
have developed custom active-sampling pipelines for finding maximally informative comparisons
[42]. These studies, however, are domain-specific and focus specifically on images, which potentially
over-rely on low-level features to guide prediction. Language, on the other hand, provides an attractive
alternative as it is well-suited for use across modalities, and text descriptions scale only linearly in
the number of stimuli, which makes crowdsourcing much more feasible. More recently, we explored
[38] the use of text captions to predict human similarity, however, the work focused solely on images,
it did not collect tag data that were not available for the datasets, and was limited to the datasets
already analyzed by Peterson et al. [36]. In addition, the work did not include a comprehensive
comparison of ML architectures, nor consider combining visual and textual representations to explore
the sources of variance in human judgments. Our current work seeks to remedy these limitations and
extend the study of representational similarity between humans and machines (e.g., [25–28, 32]), by
comprehensively studying text-based proxies jointly with a large baseline of modern architectures
across different modalities, and providing an efficient pipeline for crowdsourcing textual descriptors.
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A Animals B Vegetables C Furniture

Figure 2: Similarity matrices and MDS embeddings for the three image datasets.

3 Studies

Experiment details: participants and compute time. We collected data from N = 1, 823 US
participants for the new behavioral experiments reported in this paper. Participants were recruited
anonymously from Amazon Mechanical Turk and provided informed consent under an approved
protocol by either the Institutional Review Board (IRB) at Princeton University (application 10859)
or the Max Planck Ethics Council (application 2021_42) before taking part. Participants earned
9-12 USD per hour, and each session lasted less than 30 minutes. The total amount spent on
participant compensation was 6,319 USD. The recruitment criteria were participating in more than
5,000 previous tasks with a 99 % approval rate (see Supplementary Section B for additional details
about the behavioral experiments). All experiments were implemented with the Dallinger and PsyNet
frameworks for large-scale behavioral research [44]. In Supplementary Section A.2, we include the
data that was collected, instructions, and code for replication of the behavioral experiments. We
also provide the code for computational experiments and analysis. Our computational experiments
cumulatively took about 2 weeks of continuous run-time on a x1.16xlarge AWS instance with 64
vCPUs and 976 GiB of memory (see Supplementary Section C for additional details about the
computational experiments).

3.1 Images

Images are both high-dimensional and naturalistic, and at the same time benefit from a large array of
available embedding models, such as convolutional neural networks and vision transformers [45]. To
link our work to previous research, we considered three image datasets of common objects (animals,
furniture, and vegetables) introduced in [36] and further studied in [38], each comprising 120 images.
The similarity matrices (obtained from [36] and used with permission from the authors) are shown in
Figure 2 along with their MDS embeddings (for interactive maps see3). Captions (but not tags) for
these images were collected in [38]. As can be seen, the organization of the stimuli in MDS space is
interpretable, capturing semantic groups that can be easily recognized such as predator animals, or
vegetables that grow above or below ground.

To collect semantic information on images, we first applied our novel tag-mining pipeline to each of
the three datasets to get concise semantic labels that were not available in the original datasets (see
Figure 1B; overall, we recruited N = 171 participants for this modality). Then, given the captions
and the newly collected tags, we generated similarity predictions based on an array of approaches.
These approaches can be split into two main groups, namely, embedding-based (e.g. language models)
and embedding-free methods (text analysis), depending on whether they used pre-trained machine
embeddings or not (Figure 1A). The embedding-based methods can be further split into three groups
based on the kinds of input data they process, namely, image [45], text [23, 24] or image-text [7]
(denoted respectively as “unimodal baseline”, “captions/tags embeddings” and “multimodal baseline”
in Figure 3). To compare against the multimodal model CLIP [7], we introduced a set of additional
“stacked” representations, which we produce by concatenating the best performing (see below) pure-
textual and pure-visual representations into a single long embedding. Similarity predictions for pairs

3https://words-are-all-you-need.s3.amazonaws.com/index.html
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Figure 3: Model evaluation on images. A: Correlation between top models and human similarity
scores averaged over datasets and architecture variants. Error bars denote one standard deviation
(SD). B: Mean correlation per prediction approach (the small numbers in the top represent the number
of models averaged to produce each bar). C: Correlation between models and human similarity as a
function of number of model parameters.

of stimuli in the embedding-based group are generated by encoding the stimuli’s associated input
data (i.e., the image itself or its text descriptors) into a pair of latent vectors and then computing a
similarity score by applying a suitable metric such as cosine similarity (see Supplementary Section C).
In particular, to embed tags we used ConceptNet Numberbatch (CNNB) which is a word-embedding
model trained on the ConceptNet knowledge graph that leverages other popular word embedding
models such as word2vec and GloVe [23]. To embed free text, we used variants of SimCSE [24], a
recent contrastive language-embedding model that builds on BERT [46] and is tuned for semantic
similarity. As for the embedding-free approaches, the similarity was instead computed based on
tokenization and co-occurrence counts directly in word space (denoted as “text analysis” in Figure 3).
Throughout, we quantified performance by computing the Pearson correlation r between the model
predictions and ground truth similarity scores. We compared this simple method with two other
criteria in which we introduce a supervised re-weighting for the different embedding dimensions and
estimate performance on held-out stimuli, as suggested in the previous literature [36, 38]. We discuss
this in Supplementary Section D.1 and validate that they overall give consistent results.

Figure 3 summarizes the performance of the various techniques averaged over the three image
datasets and architecture variants (see Supplementary Section D.2). The top-performing models and
their approach-level averages are shown in increasing order in Figure 3A-B, relative to the average
inter-response reliability (IRR) which serves as an approximated prediction upper bound. We see that
the best performing models are the stacked representations which combine visual embeddings such
as ConvNext [47] or the vision transformers Swin [48] and ViT [49] with the textual representations
of SimCSE [24], outperforming the multimodal baseline CLIP [7]. These are then followed by
the unstacked Swin transformer and the embedding-free TF-IDF-cosine method, which computes
cosine similarity between the bag-of-words representations of tags/captions scaled with TF-IDF
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scores applied to captions (see Supplementary Section C.2.1). Crucially, while the caption-based
method performs on par with the best pure-vision model, the boosted performance of the stacked
representations suggests that language-based and vision-based representations capture different
sources of variance. The remaining gap between the models and the IRR bound suggests that there
are aspects of human similarity judgments that are not captured by the models. Possibly, this is due to
score dilution that arises from the contributions of irrelevant dimensions in embedding-based methods.
To test this, we applied the reweighting procedure discussed above, whereby the contribution of
each latent dimension is fine-tuned based on a subset of the similarity scores and then evaluated
on held-out-images. We found that, while this procedure does reduce the gap (particularly for
caption embeddings), it does not eliminate it (see additional analysis with two types of fine-tuning
methods in Supplementary Section D.1). To further investigate the effect of architecture, Figure
3C plots model performance against the number of model parameters on a log scale. Overall, we
found a positive correlation between similarity performance and the number of model parameters
(r = 0.41, p < 0.001). We also found that for baseline models, performance on ImageNet [50]
correlated positively with human similarity (r = 0.26, p < 0.001), though there were some exceptions
with high ImageNet performance but low similarity performance, such as the image transformer BEiT
[51] (see Supplementary Section C.1.1 and Figure 13).

3.2 Sounds

We next consider the domain of sounds and specifically focus on emotional prosody. Speech prosody
is characterized by variations in pitch, loudness, timing, and voice quality which can communicate the
emotional state of the speaker [52]. We selected 1,000 recordings from the RAVDESS corpus ([53],
released under a CC Attribution license), which consists of emotionally-neutral sentences spoken
by 24 US American actors to convey a specific target emotion. In this corpus, the same sentence is
recorded for all emotions by all speakers.

We collected two judgment batches of different respects for similarity on the same subset of 100
recordings. In one batch (N = 252 participants), participants were instructed to focus on the
emotional similarity of each pair of recordings, whereas in the other (N = 257) they were instructed
to focus on the speaker’s voice irrespective of their emotions (see Supplementary Section B). We
elicited an average of 85 judgments per participant, collected over 4,950 unique pairs. The resulting
similarity matrices as well as their MDS embeddings are shown in Figure 4 and show commonalities
but also substantial differences (the correlation between the similarity matrices corresponding to
the identical stimuli under different respects for similarity was r = 0.33). In the case of the
emotion-respect, a block-diagonal structure emerges in the data corresponding to the underlying
target emotions, as well as off-diagonal patterns. The MDS embedding of this matrix reveals a clear
valence-arousal distribution (for interactive audio map see4) suggesting that this space is indeed
semantically rich for participants. As for the speaker respect, the emotion blocks disappear and the
MDS map reveals two clear clusters corresponding to the speaker’s sex. This finding highlights the
idea that perceived similarity can have many respects which can vary in qualitative ways [54].

We also collected tags (N = 217 participants) and free-text captions (N = 151) for the full 1,000
recordings in the emotion respect, as well as tags (N = 35) and captions (N = 39) for the 100
recording subset in the speaker respect for comparison. In this section, we focus on text descriptors
of the 100-stimulus subset from the similarity experiments (full set discussed in Section 3.4). To
generate predictions based on these descriptors, we apply the same techniques as in images. As for
baseline audio-processing models, we used a suite of audio models including Wav2Vec [55] and
HuBERT [13] (see Supplementary Section C.1.1 for full list). The performance scores are shown in
Figure 5. We see that in both cases, the embedding-based caption methods yield the best results, with
the SimCSE models saturating the IRR bound for the speaker respect case. The observed gap in the
emotion respect potentially reflects the richness and variability of emotional expression.

Another interesting question to ask here is why the same pair of sounds would trigger different
responses under different respects for similarity. One idea is that different respects are inferred from
different low-level cues. Preliminary support for this was given by the relatively high correlation
(r = 0.42 and 0.49 for emotion and speaker, respectively) of 88 standard low-level features that
are used in voice research (extracted directly from the recordings; [56]) for both respects (see the
purple bar, “low-level features” in Figure 5A-B). To further investigate this, we selected pitch- (mean

4https://words-are-all-you-need.s3.amazonaws.com/index.html
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Figure 4: Similarity judgments and MDS embeddings for the emotion and speaker audio respects.
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Figure 6: Video dataset. A: Similarity matrix and MDS embedding. Colors indicate the activity type
in the dataset. B: Top performing models.

fundamental frequency), intensity- (loudness), and voice-quality related (spectral slope) features from
the set [57] (see Supplementary Section C.2.2). We then correlated the similarity score of each pair of
stimuli with the absolute difference between each of their low-level features. The results are shown
in Figure 5C. We see that, indeed, there are clear strong low-level predictors in both respects, with
loudness being the strongest in the case of emotions, potentially capturing the arousal dimension,
whereas mean pitch being the most important in the case of speakers, potentially capturing perceived
sex. The predictive power of these low-level features suggests that they can be used themselves as a
predictive embedding that can be combined with the other semantic embeddings discussed earlier;
we explore this option in Supplementary Section C.1.3.

3.3 Video

Moving one further step up in complexity, we consider the audio-visual domain of videos. We chose
in this case to study a subset of the Mini-Kinetics-200 dataset [58] (released under a CC BY 4.0
International License). This subset contains 1,000 short video clips of diverse human activities,
ranging from cooking and swimming to playing instruments and reading books (see additional details
in Supplementary Section A.1). As before, we began by collecting similarity judgments (N = 284
participants) over a subset of 100 videos, as well as tags (N = 221) and captions (N = 151) over the
full 1,000-video dataset. The similarity matrix and its MDS embedding are shown in Figure 6, we see
clusters emerging such as different sports-related activities like playing golf, baseball, and football as
well as music-making like beatboxing, playing accordion or a trumpet (for interactive map showing
videos see5). As for baseline models, here we considered three modern video-processing architectures
known as SlowFast and Slow [59], and X3d [60] which incorporate information from different
temporal and spatial scales to capture motion dynamics as well as fine details. The performance of
the various techniques is shown in Figure 6. We see that embedding-based techniques applied to
tags and captions perform particularly well, reaching very close to the IRR bound, suggesting that
similarity in this domain is heavily driven by high-level semantic knowledge. This is not surprising,
as the interpretation of the similarity of activities like beatboxing and playing accordion involves
complex knowledge that cannot be mapped into simple low-level cues. We also tried including audio
embeddings from the videos in similarity predictions, but this did not increase correlation with human
similarity judgments (see Supplementary Section C.1.3).

5https://words-are-all-you-need.s3.amazonaws.com/index.html
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Figure 7: Semantic networks based on tag-mining for the 1,000-object audio and video datasets.

3.4 Similarity at scale

A major limitation of similarity-based approaches is the quadratic scaling of the number of human
judgments as a function of the number of stimuli. Indeed, even relatively small datasets (as in this
work) on the scale of 100 objects required about 20,000 judgments to produce high-quality similarity
matrices and to average out inter-rater noise. This scaling quickly becomes prohibitive once we
move one magnitude higher in the number of objects, requiring a variety of sophisticated methods
[37, 42, 61]. Our approach suggests that text descriptors provide a much simpler route for generating
such proxies, since a) they scale only linearly in the number of objects, and b) they are compatible
with different modalities. To get a sense of the semantic content captured by our text descriptors,
Figure 7 shows a network analysis inspired by [62] of the tags mined using our adaptive pipeline over
the 1,000 emotion and video datasets (see Supplementary Section D.5). As can be seen, both semantic
networks are extremely rich. In the case of videos, we see large-scale clustering emerging across the
various tags, capturing a variety of activity topics such as sports, music, and playing more generally.
As for emotions, the tag distribution factorizes neatly into the classic valence-arousal distribution,
but at a much more detailed level. All text descriptors and their associated 1,000-by-1,000 predicted
similarity matrices are made publicly available (see Supplementary Section A.2).

4 Discussion

In this work, we studied the extent to which sensory experiences can be captured by language.
We quantified sensory experiences using similarity judgments and provided compelling evidence
from three different modalities and large behavioral studies showing that textual descriptors, when
combined with text embedding models, correlate strongly with human similarity scores and perform
just as well as state-of-the-art image-, audio- and video-processing architectures. In doing so, we
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introduced a novel adaptive technique for crowdsourcing high-quality semantic tags and highlighted
its prospect for studying the semantic organization of large datasets and their similarity structure.

4.1 Limitations and societal implications

One limitation of our work is that our textual representations did not always capture human similarity
entirely, as indicated by the observed gaps between model performance and IRR bounds. This
suggests that ML algorithms still have room to improve in terms of how they represent stimuli in
a human-like manner. Second, a promising avenue for improving machine representations using
similarity judgments is to incorporate them in the training objectives of deep models, e.g. in the
context of contrastive learning [63]. On the one hand, the proxies generated from our pipeline can
support ML datasets, but they are also at risk of baking in high-level human biases that can lead to
adverse societal implications, such as amplifying race and gender gaps. Researchers should devote
utmost care to what they choose to incorporate in their training objective. On the positive side, we
believe that our approach paves the way for the study of cross-cultural variation of human semantic
representations by providing efficient tools for crowdsourcing high-quality semantic descriptors
across languages. This is particularly relevant for low-resource languages, where our tag-mining
techniques can work even with the absence of pre-trained ML models [64, 65].

4.2 Conclusion

Our work showcases the importance of combining machine learning and cognitive science approaches
for mutually advancing both fields. In particular, we believe that the methodologies adopted in this
work have the potential to greatly advance basic research on naturalistic representations in cognitive
science and improve machine representations and drive them toward human alignment.
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Supplementary materials

A Stimuli and data

A.1 Stimuli

Throughout this work we considered five stimulus datasets across three different modalities: images,
audio, and video. For images, we considered three datasets of common objects introduced in [36],
namely, animals, furniture and vegetables, and each dataset contained 120 images. As for the audio
dataset, we used the RAVDESS corpus ([53], released under a CC Attribution license), which consists
of emotionally-neutral sentences spoken by 24 US American actors to convey a specific target
emotion. To construct the 1,000-recording dataset, we selected 3 emotions per speaker per sentence.
We randomly omitted 104 emotional stimuli and included all 96 neutral recordings (the dataset only
contains 2 neutral recordings per speaker per sentence). We selected another subset of 100 stimuli
for the similarity study by balancing the different emotions (∼13 recordings per emotion). Finally,
for the video dataset, we considered the Mini-Kinetics-200 dataset [58] (released under a CC BY
4.0 International License), which contains a large set of short video clips of human activities from
200 activity classes. Specifically, we focused on the validation split, which contains 5,000 videos
in total. To construct our 1,000-video dataset, we sampled 5 random videos from each of the 200
activity categories. The 100-video subset used in the similarity experiment was then generated by
sampling 100 random stimuli from the 1,000 list.

A.2 Code and data availability

A view-only anonymous link is provided to the public, containing all the data collected for this
project during the review stage 6. It includes the new human behavioral data, the computational
experiments with machine learning models, and all the necessary analyses scripts for producing the
results. Additionally, the repository includes the Dallinger/PsyNet source codes for reproducing the
behavioral experiments. Finally, we present an interactive visualization 7 for exploring the similarity
between stimuli as experienced by humans and different methods reported in the paper.

B Behavioral Paradigms

B.1 Participants

All participants provided informed consent under an approved IRB protocol by either the Institutional
Review Board (IRB) at Princeton University (application 10859) or the Max Planck Ethics Council
(application 2021_42) prior to participating in our studies. Participants were recruited on Amazon
Mechanical Turk8 (AMT), an online crowd-sourcing platform for worker recruitment. To help recruit
reliable participants, we required that participants: a) have at least 99% approval rate on prior AMT
tasks, and b) have completed no less than 5,000 tasks on AMT. We further required that participants
are at least 18 years of age and that they reside in the United States. Participants were paid a fair
wage of 9-12 USD per hour. Overall, N = 1, 823 participants completed our studies and the self-
reported ages ranged from 20–78 (M = 41.1, SD = 11.4). The total amount spent on participant
compensation was 6,319 USD. The exact number of participants for each of the 12 new behavioral
experiments is reported in Table 1.

B.2 Implementation

All behavioral experiments were implemented using the Dallinger9 and PsyNet [44] frameworks.
Dallinger is a modern tool for experiment hosting and deployment which automates the process of
participant recruitment and compensation by integrating cloud-based services such as Heroku10 with

6Code and data: https://osf.io/dxzg7/?view_only=18a49289a66640e8b8abb8edae378149
7Interactive plots: https://words-are-all-you-need.s3.amazonaws.com/index.html
8https://www.mturk.com/
9https://dallinger.readthedocs.io/en/latest/

10https://www.heroku.com/
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Table 1: Behavioral experiment summary table.

Modality Paradigm Respect Total stimuli Trials per
participant

Section N Pre-screening

Images Tags Animals 120 60 3.1 56 LX
Images Tags Furniture 120 60 3.1 58 LX
Images Tags Vegetables 120 60 3.1 57 LX
Audio Similarity Emotions 100 85 3.2 252 HT
Audio Captions Emotions 1,000 50 3.2 151 HT, LX
Audio Tags Emotions 1,000 50 3.2 217 HT, LX
Audio Similarity Speaker 100 85 3.2 257 HT
Audio Captions Speaker 100 50 3.2 39 HT, LX
Audio Tags Speaker 100 50 3.2 35 HT, LX
Video Similarity Activities 100 85 3.3 284 HT
Video Captions Activities 1,000 50 3.3 196 HT, LX
Video Tags Activities 1,000 50 3.3 221 HT, LX

Note. ‘N ’ denotes the number of participants included in the analysis; ‘LX’ denotes the LexTALE
English proficiency pre-screening task; ‘HT’ denotes the headphone test.

online crowd-sourcing platforms such as AMT. PsyNet is a novel experiment design framework that
builds on Dallinger and allows for flexible specification of experiment timelines as well as providing
support for a wide array of tasks across different modalities (visual, auditory and audio-visual).
Participants interact with the experiment through their web-browser, which in turn communicates
with a backend Python server responsible for the experiment logic.

B.3 Pre-screening

A common technique for filtering out participants that are likely to deliver low-quality responses,
as well as automated scripts (bots), is to implement pre-screening tasks prior to the main part of
each experiment. Failing the pre-screening tasks results in early termination of the experiment.
Nevertheless, participants are still compensated for their time regardless of whether they fail or
succeed on a pre-screener to ensure fair compensation. The role of pre-screeners in our studies was to
realize two main criteria for data quality, namely, a) to be able to collect high-quality text descriptors,
and b) to ensure that participants are able to inspect the target stimuli properly (in particular the audio
component in prosody and videos). To do this, we implemented two pre-screening tasks, an English
proficiency test and a standardized headphone test (used only for audio and video experiments). Table
1 provides details on which pre-screeners were used in each of the behavioral experiments.

Figure 8: Example trial from the LexTALE pre-screening task [66].

English proficiency test. To test participants’ English proficiency, we used LexTALE, a lexical
decision task developed in [66]. In each trial, participants were briefly presented (1 second) with
either a real English word or a made up word that do not exist. Participants were instructed to guess
whether the word was real or not. A total of 12 trials (half of them being real words) were presented,
and 8 of them needed to be correct for the participant to pass. The presented words were: hasty, fray,
stoutly, moonlit, scornful, unkempt, mensible, kilp, plaintively, crumper, plaudate, alberation. An
example trial is shown in Figure 8.
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Figure 9: Example trial from the headphone pre-screening test [67].

Headphone test. We used the headphone test developed by Wood et al. [67], which is used as a
standard pre-screener for high-quality auditory psychophysics data-collection procedures [68]. The
test is designed to ensure that the participants are wearing headphones and are able to perceive subtle
differences in volume. The task consists of a forced choice task, in which three consecutive tones are
played, and the participant has to identify which of them is the quietest. Crucially, these tones are
constructed to exhibit a phase cancellation effect when not using headphones, and therefore making
it difficult for non-headphone users to identify the quietest tone. Participants had to answer 4 out of 6
trials correctly to pass this test. An example trial is shown in Figure 9.

Figure 10: Screenshot from the similarity judgment task over video pairs.

B.4 Similarity judgments

In the present work, we collected similarity judgments across audio and video datasets. Each dataset
comprised of 4,950 unique pairs corresponding to the number of unordered subsets that contain
two distinct objects (i.e., excluding self-similarity), within a set of 100 stimuli. We did not collect
similarity judgments over the three datasets of images, as these were provided in [36] (and used here
with permission). The experiments proceeded as follows: upon completion of the consent form and
the pre-screening tasks, participants received instructions regarding the main experiment:
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Audio (emotion-respect). In this experiment we are studying how people perceive
emotions. In each round you will be presented with two different recordings and
your task will be to simply judge how similar are the emotions of the speakers.

Audio (speaker-respect). In this experiment we are studying how people perceive
speaker voices. In each round you will be presented with two different record-
ings and your task will be to simply judge how similar are the speakers’ voices
irrespective of their emotions.

Video. In this experiment we are studying how people perceive activities. In each
round you will be presented with two different videos and your task will be to
simply judge how similar are the activities in them.

The instructions then continued as follows:

You will have seven response options, ranging from 0 (’Completely Dissimilar’) to
6 (’Completely Similar’). Choose the one you think is most appropriate. Note: no
prior expertise is required to complete this task, just choose what you intuitively
think is the right answer.

The quality of your responses will be automatically monitored, and you
will receive a bonus at the end of the experiment in proportion to your quality
score. The best way to achieve a high score is to concentrate and give each round
your best attempt.

The experiment will begin now. You will take up to 85 rounds where you
have to answer this question. Remember to pay careful attention in order to get the
best bonus!

As described in the instructions, in each trial, participants rated the similarity between a pair of sounds
(how similar are the emotions/voices of the two speakers?) or videos (how similar are the activities in
the following two videos?) on a scale ranging from 0 (completely dissimilar) to 6 (completely similar)
(Figure 10). Overall, participants completed 85 trials on a random subset of the possible pairs. To
further motivate participants to provide good responses, we gave them an additional performance
bonus for providing consistent data. Among the 85 trials, 5 trials were repeated for consistency
checking. The responses were converted into a performance score by computing the Spearman
correlation between the original and repeat ratings. Perfect scores resulted in a 10 cent bonus.

Figure 11: Screenshot from the speaker-respect audio captioning task.
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B.5 Captions

We collected free-text captions for the video and audio datasets. Captions for the image datasets were
already collected in [38]. After completing the consent form and pre-screening tests, participants
received the following instructions:

Audio (emotion-respect). In this experiment we are studying how people describe
emotions. You will be presented with different recordings of speakers and your task
will be to describe their emotions. In doing so, please keep in mind the following
instructions

• Describe all the important aspects of the recording.

Audio (speaker-respect). In this experiment we are studying how people describe
speaker voices. You will be presented with different recordings of speakers and
your task will be to describe their voices irrespective of their emotions. In doing
so, please keep in mind the following instructions

• Describe all the important aspects of the speaker’s voice but not their emotions.

Video. In this experiment we are studying how people describe activities in videos.
You will be presented with different videos of activities and your task will be to
describe their content. In doing so, please keep in mind the following instructions

• Describe all the important activities in the video.

As well as the following guidelines adapted from [38]:

• Do not start the sentences with "There is" or "There are".
• Do not describe unimportant details.
• You are not allowed to copy and paste descriptions.
• Descriptions should contain at least 5 words.
• Descriptions should contain at least 4 unique words.

Note: No prior expertise is required to complete this task, just describe what you
intuitively think is important as accurately as possible.

The quality of your captions will be monitored automatically and provid-
ing low quality and repetitive responses could result in early termination of the
experiment and hence a lower bonus.

You will describe up to 50 recordings.

These guidelines were enforced to ensure that participants deliver sufficiently informative captions
that are not repetitive. In each trial of the main experiment, participants described a single audio
(please describe the emotions/voice of the speaker) or video stimulus (please describe the activity
in the video) (Figure 11). Overall, participants described up to 50 randomly presented stimuli. To
filter out bad participants that tend to deliver repeated responses, in each trial (excluding the first 4
trials) we computed the mean edit distance between their current response and all previous responses
that they previously provided using the partial_ratio function in thefuzz11 Python package for
fuzzy string matching. This function returns for a pair of input strings a matching score between 0
and 100 (identical strings). Early termination was enforced if the mean response matching score was
above 80. The idea here was to prevent participants from copying and pasting the same response over
and over again (or varying it only a little bit).

B.6 Tags

For the image, audio, and video datasets, we collected tag data, i.e., concise labels that describe the
salient features of a stimulus. To do so, we developed a novel tag mining paradigm in which each
stimulus was treated as a separate “chain” (see Figure 1B in the paper). When the stimulus was

11https://github.com/seatgeek/thefuzz
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Figure 12: Screenshot from the tag mining task for videos. The tag “picking” received 5 stars (very
relevant), whereas the tag “apple” is flagged (marked as irrelevant)

presented for the first time, the participant was asked to provide at least one tag. For the following
iterations, we sequenced participants so that each of them had to rate the tags provided by participants
from the previous iterations within the same chain. The rating was either choosing between one (not
very relevant) to five stars (very relevant), or marking the tag as completely irrelevant by using the
flag icon (see Figure 12). Participants could optionally introduce new tags that will subsequently be
presented to other participants assigned to the same chain. Participants could only provide tags that
were not already present, and they had to be in lower-case letters. If participants used two or more
white spaces (i.e. three or more words), a pop-up window appeared asking if such spaces were really
necessary (to discourage frequent use of long word combinations). This process continued for at least
10 iterations, after which we checked at each consequent iteration whether the chain was “full”. We
considered a chain to be full if its latest iteration had at least 2 tags that were rated at least 3 times
and had a mean rating of 3 stars. If a chain was not full after 20 iterations, we stopped collecting
further iterations. Since each experimental batch lasted for a fixed duration of less than one day, in
some cases we did not complete all chains, and a few chains had fewer iterations (3 for vegetables, 6
for animals and 2 for furniture, out of 120 chains each). Our experiment incentivized participants to
provide new tags by paying them a performance bonus of 0.01 USD if their tags were up-voted (i.e.,
not flagged) by other participants. Nevertheless, if two or more tags of the same participant were
flagged by others, the participant was excluded (the participant received a warning after the first flag).

After accepting the consent form and passing the pre-screening tasks, participants received introduc-
tory instructions regarding the main experiment:

Images. Rate & Tag animals/furniture/vegetables! Thanks for participating in this
game! In this game you will:

• Watch images of animals/furniture/vegetables.
• Rate tags that other players have given.
• Add new tags that you think are missing.

Audio (emotion-respect). Rate & Tag emotions! Thanks for participating in this
game! In this game you will:

• Listen to a speech fragment and focus on the emotional content of the record-
ing.

• Rate tags that other players have given.
• Add new tags that you think are missing.

Audio (speaker-respect). Rate & Tag speakers’ voice! Thanks for participating in
this game! In this game you will:
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• Listen to a speech fragment and focus on the speakers’ voice in the recording.
• Rate tags that other players have given.
• Add new tags that you think are missing.

Video. Rate & Tag activities! In this game you will:

• Watch a video and focus on the activities happening.
• Rate tags that other players have given.
• Add new tags that you think are missing.

Participants then received further instructions regarding the rules of the game

Images. After watching the animal/furniture/vegetable you will see tags given
by other players that describe the animal/furniture/vegetable. You should rate the
relevance of each tag by clicking the appropriate amount of stars (1 star not very
relevant, 5 stars very relevant). If you think that the tag is a mistake or completely
irrelevant, you should flag it by clicking the flag icon. If you are the first person
seeing this animal/furniture/vegetable, you may see no previous tags. You can also
add your own tag that is relevant to describe the animal/furniture/vegetable. Your
tag will then be rated by other players who are playing the game simultaneously.

Audio (emotion-respect). After listening to the recording, you will see tags given
by other players that describe the emotions in the speech fragment. You should
rate the relevance of each tag by clicking the appropriate amount of stars (1 star
not very relevant, 5 stars very relevant). If you think that the tag is a mistake or
completely irrelevant, you should flag it by clicking the flag icon. If you are the
first person listening to this speech sample, you may see no previous tags. You
can also add your own tag that is relevant to describe the emotions in the speech
fragment. Your tag will then be rated by other players who are playing the game
simultaneously.

Audio (speaker-respect). After listening to the recording, you will see tags given
by other players that describe the speakers’ voice irrespective of their emotions.
You should rate the relevance of each tag by clicking the appropriate amount of
stars (1 star not very relevant, 5 stars very relevant). If you think that the tag is a
mistake or completely irrelevant, you should flag it by clicking the flag icon. If you
are the first person listening to this speech sample, you may see no previous tags.
You can also add your own tag that is relevant to describe the speakers’ voice. Your
tag will then be rated by other players who are playing the game simultaneously.

Video. After watching the video, you will see tags given by other players that
describe the activities in the video. You should rate the relevance of each tag
by clicking the appropriate amount of stars (1 star not very relevant, 5 stars very
relevant). If you think that the tag is a mistake or completely irrelevant, you should
flag it by clicking the flag icon. If you are the first person watching this video,
you may see no previous tags. You can also add your own tag that is relevant to
describe the activities in the video. Your tag will then be rated by other players
who are playing the game simultaneously.

Finally, participants received the following guidelines regarding the tag input and the bonus scheme:

Keep tags short. A word like “green grass" should rather be submitted as “green"
and “grass", whereas a compound word such as “red wine" cannot be separated,
since “red wine" means something different than just “red" and “wine".

Bonus rules.
• If the tag you provide gets rated as a relevant tag (i.e., not flagged) by other

players
• If your tag is unique and have not been introduced by others

17



Note: Simply writing many and irrelevant tags is not a good idea because other
players might flag your tag. Your experiment will terminate early if there are too
many red flags!

Please try to use a variety of words to describe the animal / furniture / vegetable /
emotion in the speech fragment / speakers’ voice / activities in the video, and use
the entire star rating scale for your responses.

C Prediction methods

We used two main types of methods to predict human similarity judgments. The first class (“Embed-
ding methods", described in section C.1) make use of pre-trained embedding models. In the second
class of models (“Embedding-free methods", described in the section C.2) simple feature extraction
techniques are used instead of pre-trained deep learning models. Figure 1A depicts schematically an
overview of all prediction methods that we used.

C.1 Embedding models

The embedding-based methods use various embeddings and deep learning representations to predict
human similarity judgments. These methods could be further split into three groups based on the
kinds of input data they process, namely if they use a single sensory modality that is either image,
audio or video (“unimodal baseline"; see subsection C.1.1), or use text that is either tag or captions
(“text embeddings"; see subsection C.1.2), or use both (“multimodal baseline"; see subsection C.1.3).
In addition, we also tested the performance of “stacked" representations (reported also in subsection
C.1.3), where the sensory and textual embedding of a select number of models were concatenated
into a single long embedding. Overall, the computation time of embedding methods took about two
weeks on an x1.16xlarge Amazon Web Services instance with 64 vCPUs and 976 GiB of memory.
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Figure 13: Correlation with human similarity judgments as a function of ImageNet accuracy for the
various image baseline models.

C.1.1 Unimodal baseline methods

Unimodal baseline - Image models. We used 560 pre-trained models from the Pytorch Image
Models (timm) repository [45]. We chose this repository as it contains an extensive and highly
diverse set of pre-trained models in terms of architecture backbones, model sizes, and training sets.
The repository includes models published from 2014 to 2022 that use various training sets (such
as ImageNet1k, ImageNet21k, Instagram, etc.), training procedures objectives (e.g. pre-training,
fine-tuning, self-supervision, weak supervision, etc.) and architectures (e.g. VGG, ResNet, Inception,
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Table 2: All 42 image baseline models occurring in the top 60 best models reported in Figure 3A.

Model name Average score SD score Top 1
accuracy

Number of
parameters (M)

1 Swin 0.65 0.07 81.52 23.37
2 ConvNeXT xlarge in22k 0.64 0.07 N/A 348.15
3 NF-ResNet-50 0.62 0.04 80.65 23.51
4 NFNet l0 0.61 0.08 82.75 32.77
5 ResNetV2 152x4 bitm in21k 0.60 0.11 N/A 928.34
6 NF-RegNet b1 0.59 0.05 79.29 9.26
7 CLIP RN50 (image+text) 0.59 0.07 N/A 102.01
8 VGG16 batchnorm 0.58 0.11 73.35 134.27
9 VGG19 batchnorm 0.58 0.11 74.21 139.58

10 ViT tiny r s16 p8 384 0.58 0.12 75.95 6.16
11 ResMLP big 24 distilled 224 0.57 0.07 83.59 128.37
12 Twins-SVT small 0.57 0.06 81.68 23.55
13 Twins-PCPVT small 0.57 0.04 81.09 23.59
14 VGG13 batchnorm 0.57 0.11 71.59 128.96
15 CaiT xxs36 384 0.57 0.04 82.19 17.18
16 VGG11 batchnorm 0.57 0.10 70.36 128.77
17 gMLP s16 224 0.56 0.06 79.64 19.17
18 PIT xs 224 0.56 0.03 78.19 10.23
19 DeiT tiny patch16 224 0.56 0.03 72.17 5.52
20 ConViT tiny 0.56 0.03 73.11 5.52
21 CoaT tiny 0.55 0.04 78.43 5.35
22 gMixer 24 224 0.55 0.05 78.04 24.34
23 CLIP RN50 (text) 0.55 0.02 N/A 102.01
24 XCiT tiny 24 p16 384 dist 0.55 0.04 82.57 11.92
25 IG ResNeXt 101 32x48d 0.53 0.13 85.44 826.36
26 Visformer small 0.52 0.02 82.11 39.45
27 RepVGG b3g4 0.52 0.11 80.21 81.26
28 CLIP RN50 (image) 0.50 0.11 N/A 102.01
29 JXNesT tiny 0.50 0.07 81.42 16.67
30 ECAResNet light 0.47 0.14 80.45 28.11
31 DenseNet 121 0.47 0.12 74.74 6.95
32 PNASNet 5 large 0.47 0.05 82.79 81.74
33 ResNext 50 32x4d 0.47 0.11 77.62 22.98
34 ResNeSt 269e 0.46 0.12 84.52 108.88
35 GerNet S 0.46 0.10 76.91 6.25
36 SENet 154 0.46 0.09 81.31 113.04
37 FBNet 100 0.45 0.10 75.13 3.59
38 ResNet blur 60 0.45 0.10 79.30 23.51
39 HRNet w64 0.44 0.14 79.47 126.01
40 HardCoRe-NAS f 0.44 0.05 78.10 6.92
41 NASNet large 0.42 0.07 82.63 84.72
42 DLA 169 0.42 0.12 78.69 52.36

Note. Performance accuracy on ImageNet was based on [45] and was not available for all models.

Transformer, etc.). The repository also reports various evaluation metrics for each model (e.g. their
ImageNet performance).

For each model, we computed the embedding from the last layer (typically before the final softmax
layer; see below and Figure 14 for a preliminary analysis for the effect of layer depth). We then
computed the cosine similarity between pairs of embedding vectors to produce a similarity matrix.
The entire list of the performance of all models is detailed in the OSF repository associated with
this project 12. Table 2 presents additional details for the top 42 image baseline models in Figure 3A
including their average score (correlation to human judgments) across the three image datasets, the

12https://osf.io/dxzg7/?view_only=18a49289a66640e8b8abb8edae378149
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Figure 14: Scores for individual layers of audio models scaled to the total number of layers. Models
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standard deviation (SD) of this score (across datasets, repeated runs and available model parameters
in [45]), their ImageNet accuracy, and their number of trainable parameters.

Figure 3C shows the correlation to human similarity as a function of the number of parameters for
all 569 models (uni- and multimodal baselines). In general, we found that models that have more
parameters perform better (Figure 3C). Plotting all the embedding technique correlations against the
number of training parameters of their respective models showed statistically significant positive
correlation (r = 0.41, p < 0.001). However, one possible explanation for this could be the improved
performance of newer models, which typically have more parameters, on various computer vision
tasks. To test this, we computed the performance (i.e., correlation with human similarity) of the
various models as a function of their accuracy on ImageNet [50] - which was provided in [45] for all
models except for CLIP (whose implementation came from a different repository; see Section C.1.3)
and those architectures ending with the suffixes ‘in22k’ and ‘in21k’ (which signify that the model
was pre-trained for, and comes with the classification head for, ImageNet22k and ImageNet21k,
respectively). This analysis is summarized in Figure 13. We found a positive correlation between
the two metrics (r = 0.26, p < 0.001), though with some clear exceptions. For example, the vision
transformer BEiT [51] and the convolutional architecture EfficientNet [69] achieved high accuracy
on ImageNet but performed poorly on human data. On the other hand, the vision transformer Swin
[48] and the convolutional architecture ConvNext [47] both performed well on ImageNet and human
similarity. This suggests that architecture and number of parameters are better predictors of similarity
judgments than performance on ImageNet. Further analysis is required to determine what kind of
architectural components actually contribute to more human-like performance [27].

Unimodal baseline - Audio models. We used all pre-trained wav2vec 2.0 [55] and HuBERT [13]
models available in torchaudio [70]. We also extracted embeddings from WavLM [71] and data2vec
audio models [72]. Furthermore, we used additional wav2vec 2.0 and HuBERT models that were
either specialized on emotion recognition or speaker identification [73–75]. The performance of
HuBERT, wav2vec 2.0, and WavLM models is shown in Figure 5A-B. Additional details about the
models are displayed in Table 3.

In addition, we explored the correlation between the audio models and human similarity data as
a function of the layer in the model. Earlier literature has suggested that similarity to human
representations may depend on the layer of the model [25, 28, 76]. We expected that the layers closer
to the input of the model (where the representation is more low-level) to be less predictive. In general,
we found that this was the case (Figure 14). In some variants of wav2vec, however, intermediate
representations performed better, possibly due to the misalignment of the training task of wav2vec
with the emotion/speaker task. This analysis confirms the choice we made in the paper to mostly use
the last two layers of the models. Preliminary analysis of the image and video models also explored
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Table 3: All audio baseline models used in the analysis.

Model name Emotion
correlation

Speaker
correlation

Number of
parameters (M)

1 wav2vec 2.0 lv60k (100h) 0.49 0.45 317
2 wav2vec 2.0 lv60k (960h) 0.49 0.42 317
3 wav2vec 2.0 lv60k 0.51 0.40 317
4 wav2vec 2.0 lv60k (10m) 0.51 0.39 317
5 HuBERT xlarge ASR 0.45 0.44 1000
6 HuBERT xlarge 0.46 0.42 1000
7 HuBERT large ASR 0.46 0.41 300
8 wav2vec 2.0 large XLSR53 0.47 0.38 317
9 HuBERT large 0.46 0.38 300

10 wav2vec 2.0 (Audeering, emotion) 0.49 0.35 317
11 HuBERT base 0.41 0.41 90
12 WavLM large 0.46 0.34 316.62
13 HuBERT base (superb, emotion) 0.42 0.36 90
14 HuBERT base (superb, speaker) 0.42 0.36 90
15 WavLM base+ 0.41 0.36 94.70
16 wav2vec 2.0 base (960h) 0.38 0.37 95
17 WavLM base 0.39 0.34 94.70
18 wav2vec 2.0 base 0.34 0.33 95
19 wav2vec 2.0 base (10m) 0.34 0.32 95
20 wav2vec 2.0 base (superb, emotion) 0.34 0.31 95
21 wav2vec 2.0 base (superb, speaker) 0.34 0.31 95
22 wav2vec 2.0 base (100h) 0.32 0.32 95
23 HuBERT large (superb, emotion) 0.29 0.35 300
24 HuBERT large (superb, speaker) 0.29 0.35 300
25 wav2vec 2.0 large (100h) 0.32 0.31 317
26 wav2vec 2.0 large (superb, emotion) 0.31 0.32 317
27 wav2vec 2.0 large (superb, speaker) 0.31 0.32 317
28 wav2vec 2.0 large (960h) 0.31 0.30 317
29 wav2vec 2.0 large (10m) 0.31 0.29 317
30 data2vec audio large (960h) 0.31 0.17 313.28
31 data2vec audio base (100h) 0.23 0.17 313.28
32 data2vec audio large (100h) 0.23 0.13 313.28
33 data2vec audio large (10m) 0.21 0.14 313.28
34 wav2vec 2.0 (SpeechBrain, emotion) 0.11 0.19 95
35 data2vec audio base (960h) 0.16 0.12 93.16
36 data2vec audio base (10m) 0.15 0.12 93.16

different layers, but the results were similar to those we presented in audio, and are therefore not
reported here.

Unimodal baseline - Video models. We extracted embeddings from the ‘Slow’ (a 3D ResNet; see
[59]), Slowfast (a 2-path model with one path capturing semantics and the other capturing fine details;
see [59]), and X3d (a model that initially start as a simple 2D image classifier but is expanded in
several axes; see [60]) architectures implemented in pytorchvideo [77]. All video models were
pre-trained on the Kinetics-400 dataset [78]. The performance of the models is displayed in Figure
6B. Numeric correlation values are detailed in Table 4 along with model accuracy (Top1 and Top5)
on Kinetics-400, and the number of parameters in each model. The accuracies and parameter counts
are listed as reported in [77]. As with previous modalities, the number of parameters appears to be
positively correlated with correlation to human similarity.

C.1.2 Text embedding methods

Caption text embedding. We used four large pre-trained language models from HuggingFace [79] to
compute embeddings of the captions collected for each dataset: ‘bert-base-uncased’, ‘deberta-xlarge-
mnli’, ‘sup-simcse-bert-base-uncased’, and ‘sup-simcse-roberta-large’. SimCSE is a pre-training
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Table 4: All video baseline models used in the analysis.

Model name Correlation Kinetics-400 Kinetics-400 Number of
Top1 Acc Top5 Acc parameters (M)

1 Slowfast r50 0.65 76.94 92.69 34.57
2 Slowfast r101 0.64 77.90 93.27 62.83
3 Slow r50 0.61 74.58 91.63 32.45
4 X3d M 0.53 75.94 92.72 3.79
5 X3d S 0.49 73.33 91.27 3.79
6 X3d XS 0.48 69.12 88.63 3.79

procedure that uses semantic entailment in a contrastive learning objective [24]. According to
BERTScore [80], the latter three models are ranked in the top 40 models by correlation with human
evaluations on certain tasks, with ‘deberta-xlarge-mnli’ ranked first. However, in our experiments,
we found that embedding similarity computed from ‘sup-simcse-roberta-large’ has the highest
correlation with human similarity judgments out of the four models. For SimCSE-based models,
we used representations from the (final) embedding layer (where the SimCSE contrastive objective
is actually applied). For the other two models, we computed embeddings from every layer, but
restricted the main analysis to embeddings from the penultimate layers. This was to be consistent
with our procedure for modality-specific embedding models. Since there are multiple captions per
stimulus, an aggregation procedure had to be applied to produce a single embedding vector for each
stimulus. In our main analysis, for each stimulus, we extracted the embedding for each associated
caption and averaged these embeddings together before computing cosine similarity between the
mean embeddings. We also tried an alternative approach of concatenating the captions together
into a single paragraph, which we then passed through the language models to compute a single
embedding per stimulus. We found that this did not consistently improve performance and in many
cases even decreased it, though we note that we did not experiment with different permutations of the
concatenated captions, nor did we extensively study other ways to combine them together. Future
work could explore other techniques for pre-processing captions and aggregating representations
from multiple captions in ways that would improve correlation with human similarity judgments.

Tag text embedding. We experimented with several algorithms for computing similarity between
sets (or multi-sets) of tags. The algorithms described in this section all involve using ConceptNet
NumberBatch (CNNB) [23] as the embedding backbone for turning discrete tags into continuous
vector representations. For each stimulus, we took the tags remaining in the final iteration, and tested
whether they were found in the dictionary for our embedding model. If a tag was not found and if
it contained no spaces, we tried to correct the spelling before trying to look it up in the dictionary
again. If a tag contained spaces, we would split it into individual words, correct their spelling, and
average together the embedded representations of those words that were found in the dictionary.
Tags that were not found even after spelling correction and splitting were excluded from the set and
did not contribute to the final representation. For the methods marked ‘(no split)’ we did not split
multi-word tags, instead we just excluded multi-word tags that were not found in the embedding
model dictionary. In the following, we describe the different techniques used to generate predictions
based on tag embeddings.

Tags CNNB overlap. For each pair of stimuli, we counted the number of ‘almost identical’ tag
embeddings, defined as every respective element of the two embeddings being less than a certain
threshold apart (in our case, this threshold was 0.1). We then set similarity for that pair of stimuli to
be this count, i.e. the number of ‘almost identical’ tags, normalized by the total number of tags across
the respective two sets.

Tags CNNB quantized. This method involves quantizing tags using cosine similarity to find the
number of unique tags. For each pair of stimuli, we counted the number of tags assigned to the first
stimulus that had cosine similarity greater than a certain threshold (in our case, this threshold was 0.7)
to at least one tag of the second stimulus (call this value NA) and vice-versa (NB). The minimum of
these two values is the number of unique, shared tags between the two sets (min(NA, NB)). The total
number of unique tags across the two sets is then the total number of tags in each set (TA+TB) minus
the maximum number of shared tags (max(NA, NB)). We compute similarity as the ratio of the
number of unique, shared tags to the total number of unique tags, SAB = min(NA,NB)

TA+TB−max(NA,NB) . For
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example, suppose the two sets of tags are A : {a, b, c, g} and B : {a, b, d, e}, so TA = TB = 4, and
that a, c have cosine similarity of 0.8. The number of tags from set A found in set B is NA = 3, and
those from B found in A is NB = 2. The number of unique, shared tags is min(NA, NB) = 2 (since
{a, b, c} can be represented by {a, b}), and the total number of unique tags is 4 + 4− 3 = 5 (since
{a, b, c, g, a, b, d, e} can be represented by {a, b, d, e, g}). The assigned similarity is then SAB = 2

5 .

Tags CNNB mean. The set of tag embeddings for each stimulus were averaged together to form a
single embedding assigned to the respective stimulus. We then computed cosine similarity on the
embeddings of each pair of stimuli.

Tags CNNB mean (no split). Same as above, but without splitting multi-word tags (i.e. ones that
contain spaces) during the embedding process.

All spelling corrections in these algorithms were performed using the Python package
pyspellchecker13, taking the top corrected recommendation returned by the spell checker in
each case.

As a baseline experiment, we also tried randomly selecting a single high-rated tag per stimulus and
computing cosine similarity on embeddings of those. As expected, we found that correlation with
human similarity judgments was significantly lower with this method than with other methods and
highly variable depending on random seed.

C.1.3 Multimodal and stacked analysis

We conducted several analyses to determine whether stacking (i.e. concatenating) representations
from multiple modalities of the same stimulus would improve correlation with human similarity
judgments. During our analyses, we mostly focused on stacking caption embeddings with modality-
specific embeddings. For the image datasets, we started with the multimodal model CLIP [7] which
jointly learns representations of images and text, with stimuli from both modalities embedded into the
same space. As a result, users can extract comparable embeddings both for an image and its associated
captions. Our CLIP models [7] were taken from the OpenAI CLIP repository14. We found that
the stacked CLIP embeddings outperformed both of the single modality versions (text and images)
of our CLIP embeddings. This motivated additional analyses to probe whether the improvement
in performance came from CLIP’s multi-modal pre-training procedure, or whether it was due to
the combination of the two modalities. For each dataset, we stacked the five best sets of model
embeddings with the best set of caption embeddings (those coming from ‘sup-simcse-roberta-large’).
However, unlike in the CLIP case, the modality-specific embeddings and the caption embeddings are
not from the same space and had to be normalized at the feature-level (by subtracting mean from each
feature and dividing by standard deviation) before being stacked (stacking performance was generally
lower if the embeddings were not pre-normalized before stacking). These results are visualized
in Figure 15, and in the case of images, stacking embeddings that were individually good indeed
outperformed stacking the multi-modal embeddings from CLIP. In addition, stacked embeddings
generally performed better than either the caption embeddings or modality-based embeddings did on
their own (except in the reweighted case for animal images and videos, i.e. LT-CCV/(norm), where
pure captions yielded the best results). This suggests that while text-based predictions perform on
par with baseline models that do not rely on language, they do seem to explain non-identical sources
of variance in human judgments. For the video dataset, we also considered stacking embeddings of
the audio from the videos along with the associated video and caption embeddings. However, we
found that the cosine similarity from audio embeddings on their own had almost no correlation with
human similarity judgments and, as a result, did not add audio embeddings to the embedding stacking
analysis for the video dataset.

C.2 Embedding-free models

In this work, we also conducted an additional evaluation of prediction models beyond embedding-
based techniques (described in the previous section). Specifically, we compared the predictions
of embedding-based models, which utilize deep learning representations, with those of traditional
methods of text mining and audio feature extraction.

13https://pyspellchecker.readthedocs.io/en/latest/
14https://github.com/openai/CLIP
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Figure 15: Scores for best baseline models, the best caption models and the stacked (i.e. concatenated)
embeddings.

C.2.1 Tag/caption text analysis

The aim of the simple text analysis methods was to compare deep learning embeddings with traditional
embedding-free techniques. Such techniques are particularly useful for low-resource languages or
cross-cultural comparisons [62, 65], for which pre-trained models are lacking, as they work solely on
the basis of the text itself.

The text analysis proceeded as follows. We first performed the following initial pre-processing steps

• For caption data, we concatenated all the captions describing the same stimulus into a single
long “document.”

• For tag data, we wanted to prioritize tags that appeared earlier in the tag-mining chains and
were rated higher. To that end, we gathered all tags from all iterations and duplicated tags
from a given iteration based on the ratings they received. For example, if the tag “tomato”
received three stars, then we would add the repeated tokens “tomato, tomato, tomato” to
the aggregated list (“document”). In a given iteration, flagged tags are removed, but if they
are rated later, then they are included. The total number of repetitions per token is equal
to the sum of all the stars they received in all iterations. As a result, each token is repeated
multiple times, which we take into consideration in consequent analysis.
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For the next steps, we used the Matlab text analysis toolbox 15. Unless otherwise specified, we
used default parameters for all functions. To generate similarity matrices, we applied the following
methods:

Co-occurrence method. In this approach, we simply counted the number of repeated pairs of words
in documents i and j and normalized by the total number of pairs. Formally, we use wi to denote the
word list of a document i. Let wi,k be the k-th word in the wi list of words, and let |wi| denote the
length of the list. We denote by δ(c, d) the indicator function that returns 1 if and only if the word c is
identical to the word d, and 0 otherwise. We computed the co-occurrence score S(wi, wj) according
to the following formula:

S(wi, wj) =

∑
k

∑
l δ(wi,k, wj,l)

|wi||wj |

Co-occurrence-rep. This method was applied only to tags. We used an identical procedure to the
Co-occurrence method, except that we did not separate the words within a tag as separate tokens and
instead treated the entire tag (that may include multiple words) as a single token.

Rouge score. In this approach, similarity was estimated by computing the rouge score of
the word lists associated with each pair of documents. The Rouge score was computed using
rougeEvaluationScore [81].

The following methods make use of tokenized data and a pre-processing procedure that we found
effective. Pre-processing was applied to both tag and caption data and tokenization was performed as
follows:

• We separate all text into single words by applying the tokenizedDocument function.
• We added part of speech information using the addPartOfSpeechDetails function.
• We performed Lemmatization using the normalizeWords function.
• We erased punctuation from the token using the erasePunctuation function.
• We removed stopwords using the removeStopWords function.
• We removed words with less than two characters or more than 15 characters.
• We created a bag of words representation of each tokenized document using the bagOfWords

function.
• We also removed words that were not present in more than two documents using the
InfrequentWords function.

With the results of these pre-processing steps, we then computed similarity matrices based on the
following methods:

bm25S. We used bm25+ to compute similarity between documents [82] using Matlab’s
bm25Similarity function. This function represents TF-IDF-like retrieval functions used in docu-
ment retrieval. We used a variant that has a normalization function that properly handles documents
with a long list of words.

tf-idf-cosine. We computed pairwise cosine similarities between document pairs using the TF-IDF
matrix derived from their word counts and Matlab’s cosineSimilarity function.

C.2.2 Low-level audio features

We used OpenSMILE [83] to extract 88 standard low-level audio features from the eGeMAPS feature
set [56] consisting of frequency, energy, and spectral parameters for the 1,000 acoustic stimuli. In
Figure 5C, we used a single pitch-related (mean F0), energy-related (mean loudness), or spectral
feature (spectral slope) to predict the pairwise similarity for the emotion- and speaker-respect. We
show that mean F0 alone gives us a correlation of r = 0.41 to predict speaker-respect. This is already
close to the correlation of r = 0.49 which we obtain for 88 z-scored features. The correlation for
loudness and spectral slope is much lower, indicating that pitch plays an important role in describing
the voice, potentially capturing perceived sex. For the emotion-respect data, we observe a reversed
effect. Loudness correlates strongest (r = 0.43) with the pairwise similarity. This correlation is

15https://mathworks.com/products/text-analytics.html
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similarly strong as for the 88 z-scored features (r = 0.42). The correlation for mean F0 and spectral
slope is much lower. This indicates that loudness plays an important role in predicting emotion-
respect, potentially capturing the arousal dimension. Together, the low-level analysis indicates a
strong interaction between the respect of similarity and certain low-level features (but not all) that are
selectively predictive of one kind of respect.

D Performance and visualization

D.1 Performance quantification

Our primary performance metric throughout this work was Pearson correlation (r) between predicted
similarity matrices and ground truth human similarity judgments. In all cases, correlation was
computed between the triangular off-diagonal matrices to avoid skewing results based on the diagonal
(which consists of all ones) or by having duplicates (since the similarity matrix is symmetrical). To
lower the risk of over-fitting, for our main results, we compared raw similarity scores produced via
the methods discussed above without performing any additional transformations or optimization
that would fit the predictions to the ground truth judgments. Several previous studies investigated
improving correlation by applying and fine-tuning simple linear transformations to embedding vectors
zTWz where W = diag(w1, . . . , wd) via a cross-validated ridge regression procedure that could
be fit to ground truth similarity judgments. The parameters of the diagonal reweighting matrix
W are fitted to a training subset of stimuli and used to predict similarity of pairs in a held-out
validation set [36, 38]. To be consistent and make results comparable, here we report the results of
performing this 6-fold cross-validated linear transformation (LT-CCV) on the model embeddings
and datasets considered in this work. The analysis was carried out using the RidgeCV package
from the scikit-learn Python library [84]. Results with both normalized (‘LT CCV (norm)’) and
un-normalized (‘LT CCV’) regressors are shown in Figures 16 and 17; see RidgeCV documentation
for details on normalization 16. We see that the linear transformation does not consistently improve
performance when applied to many of the modality-based embeddings, but it does frequently improve
performance when applied to caption embeddings. As mentioned in Section 3.1, we also see that the
reweighting in the case of images (Figures 16A and 17A) does not close the gap between the models
and the IRR level, though it does appear to bring CLIP embeddings that incorporate text particularly
close to it. As for the other modalities, we see that the audio speaker-respect and video datasets, the
reweighted caption-based models seem to cross the IRR line, potentially reflecting a) the fact that
IRR is only an approximate bound, and b) some degree of over-fitting.

D.2 Averaging and summary bar graphs

In the performance bar plots in Figure 3A, we averaged over the performance correlation of the three
image datasets and over variants of the same architecture to reduce the total number of models in
the figure. To give an overview of the different approaches, we averaged over all models using the
same approaches in Figure 3B. To reduce the complexity of Figure 5A–B, we grouped the results by
approach and architecture.

D.3 Inter-response reliability (IRR)

We compared the performance of the different prediction methods to the inter-response reliability
(IRR) of participants, which serves as an approximate bound on performance. Following [36], we
computed IRR for each human similarity matrix using the split-half correlation method. Specifically,
we randomly split the similarity judgments associated with each stimulus pair into two groups and
took their respective means. This process resulted in a pair of vectors with mean rating for each
possible pair of stimuli. We then computed the Pearson correlation r between the two vectors to
generate an estimate. We repeated this random splitting process 100 times and took the mean over all
resulting values. To generate the final IRR value, we applied the Spearman-Brown correction [85]
nr/(1 + (n− 1)r) with n = 2.

16https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.
html
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Figure 16: Model evaluations for image, audio and video datasets using the LT_CCV method.
A. Performance of top 60 image models, averaged over the three image datasets and architecture
subvariants. Here and throughout, error bars indicate 1 standard deviation (SD). Absence of error bars
indicates single variant. B. Average model performance on images grouped by approach. C. Model
evaluation for video. D. Model evaluation for audio in the emotion respect. E. Model evaluation for
audio in the speaker respect.
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Figure 17: Model evaluations for image, audio and video datasets using the LT_CCV (norm) method.
A. Performance of top 60 image models, averaged over the three image datasets and architecture
subvariants. Here and throughout, error bars indicate 1 standard deviation (SD). Absence of error bars
indicates single variant. B. Average model performance on images grouped by approach. C. Model
evaluation for video. D. Model evaluation for audio in the emotion respect. E. Model evaluation for
audio in the speaker respect.
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D.4 Visualizing semantic analysis with multidimensional scaling

We used multidimensional scaling (MDS) embeddings to visualize the semantic content of similarity
matrices in two dimensions. MDS maps were constructed using the manifold.MDS function in the
scikit-learn Python library [84]. We first ran metric MDS to find a suitable initialization, and
then used the resulting embeddings as the starting point for a non-metric MDS process. We used a
maximum iteration limit of 10,000 and a convergence tolerance of 1e-100. You can explore all the
MDS maps interactively here17.

To create the MDS visualization for images (Figure 2) we generated a scatter plot for each image
embedding and then overlaid the corresponding image on top of the scatter point. As for the audio
MDS visualization (Figure 4) we colored MDS points based on the original target emotion in the
speaker dataset and changed their shape (triangle vs. circle) based on the reported speaker sex.
Finally, to visualize video MDS (Figure 6) we colored each point based on the original activity in the
video dataset.

D.5 Visualizing semantic network with graph-based analysis

We applied semantic network analysis to explore the mined tags from the 1,000-object audio and
video datasets (see Section 3.4). This method was used to investigate relationships between concepts
in a more detailed way than a simple MDS could provide (section D.4). To visualize the network
in Figure 7, we used each individual tag as a node in the network and the number of co-occurrence
between each dyadic tag pairs as their edge weight. We observed that many of the tags were connected
with many other tags, making the number of edges to be very large. To reduce the noise and make the
network more interpretable, we pruned edges that had values below a certain threshold. We set this
threshold differently for each dataset in proportion to the number of collected ratings and unique tags
(video = 3, audio emotion = 5). Furthermore, to penalize tags that occur frequently and across many
stimuli (and thus less informative), we re-weighted the edges by dividing the original edge weights
by the sum of IDF (from TF-IDF approach) values of each tag pairs; note that we only consider the
IDF component for calculation because the term frequency (TF) cannot be computed since the tags
cannot be repeated (Note that here we did not apply the preprocessing steps of section C.1.2, in which
tags that were rated more highly were repeated). This is analogous to the edge re-weighting method
suggested by Newman [86].

Next, we used Gephi [87], an open-source software for visualizing and analyzing large network
graphs, to visualize the tags for each dataset. We colored the nodes by their modularity class, a
popular method in the network sciences for detecting community structures in a network [88]. 9
communities (or modularities) were detected for the video tags with a modularity score of 0.74, 5
were detected for audio emotion with a score of 0.49. The detected communities for each of the tag
sets were highly interpretable. For instance, four of the modularities from the audio emotion tags
distinctly separated the arousal–valence emotion space, with the detected communities being: high
arousal–high valence, high arousal–low valence, low arousal–high valence, and low arousal–low
valence. To illustrate this overlap, we manually added lines in Figure 7 that indicate our interpretation
of the main axes for valance and arousal. Furthermore, we scaled the size of each node by their
betweenness centrality value [86], which is a measure for the amount of influence a node has in the
flow of the entire network. As visualized in Figure 7, the tags that had prominent roles in the video
network defined distinct groups of activities well (e.g., music, game, sports). The prominent tags in
the audio emotion network overlapped with emotion categories defined by previous literature [62]
(e.g., scared, calm, upset, annoyed).
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